
diffi: diff improved; a preview
Gioele Barabucci

Cologne Center for eHumanities, Universität zu Köln

gioele.barabucci@uni-koeln.de

ABSTRACT
diffi (diff improved) is a comparison tool whose primary goal is

to describe the differences between the content of two documents

regardless of their formats.

diffi examines the stacks of abstraction levels of the two docu-

ments to be compared, finds which levels can be compared, selects

one or more appropriate comparison algorithms and calculates the

delta(s) between the two documents. Finally, the deltas are serial-

ized using the extended unified patch format, an extension of the

common unified patch format.

The produced deltas describe the differences between all the

comparable levels of the inputs documents. Users and developers

of patch visualization tools have, thus, the choice to focus on their

preferred level of abstraction.

CCS CONCEPTS
• Applied computing → Version control; • Software and its
engineering→ Software configurationmanagement and ver-
sion control systems; • Information systems→ Document rep-
resentation; • Human-centered computing → Collaborative and
social computing;

KEYWORDS
diff, content comparison, format-agnostic document comparison

ACM Reference Format:
Gioele Barabucci. 2018. diffi: diff improved; a preview. In DocEng ’18: ACM
Symposium on Document Engineering 2018, August 28–31, 2018, Halifax, NS,
Canada. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3209280.

3229084

1 INTRODUCTION
It would be great to export a Google Sheet to a local disk as a

CSV file, manipulate it with local tools and then upload it again

to Google Docs while preserving the changes made to the remote

Sheet while we were working locally. At the moment this cannot be

done. The fundamental reason why this cannot be done is that these

two documents (the Google Sheet and the CSV) are not directly

comparable in practice. We regard their content as comparable,

but this content is encapsulated in these documents in a way that

current diff tools cannot deal with.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

DocEng ’18, August 28–31, 2018, Halifax, NS, Canada
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-5769-2/18/08. . . $15.00

https://doi.org/10.1145/3209280.3229084

There aremany examples of documents that are sort-of-comparable

but that, in practice, require fragile preprocessing steps, usually

embedded in ad-hoc applications:

• HTML and ODT documents;

• XML and JSON files;

• PNG and TIFF files;

• Protobuf and Thrift records;

• C source code in different indentation styles.

diffi1 (diff improved) is new tool whose aim is to describe the

differences between the content of two documents, regardless of

their formats.

In order to reach this aim, several theoretical and practical issues

have to be addressed:

• how can documents that use different formats be compared

• at different levels of abstractions

• using a diff algorithm that is appropriate for that combination

of documents and levels of abstraction?

In this moment, diffi is a research instrument, rather than a

production tool. Through its development, three different theses

are going to be proved (or disproved):

(1) that the CMV+P document model (Content, Model, Variants

and Physical level) and its concept of stacks of abstraction

level [4] are sound, valid and useful abstractions;

(2) that all 2-document diff algorithms can be described in three

phases: a) structural alignment phase, b) changes detection

phase and c) delta refinement phase;

(3) that in a diff tool the code that implements the comparison

algorithm(s) is much smaller than the surrounding code that

deals with deserializing the documents and serializing the

delta into a patch file.

Only the first of these theses will be discussed in this brief article.

diffi provides a significant improvement in the way compar-

ison algorithms are developed, improved and studied. By using

diffi as their base framework, the authors of comparison algo-

rithms are free to focus on the algorithms and the associated data

structures, without the need to reimplement all the gritty details

that a diff tool must care about.

2 OVERVIEW OF DIFFI
diffi takes in input a pair of files (source and target), calculates

their differences and returns a patch file that describes which mod-

ifications must be done to the source file to turn it into the target

file.

One peculiarity of diffi is that multiple abstraction levels are

compared, not only one as in on other tools. For instance, the

traditional GNUdiff tool compares files as a list of newline-delimited

strings of bytes, regardless of whether they are ODT, C++ or PNG

1
The source code of diffi is available at https://gioele.io/diffi.

https://doi.org/10.1145/3209280.3229084
https://doi.org/10.1145/3209280.3229084
https://doi.org/10.1145/3209280.3229084
https://gioele.io/diffi

DocEng ’18, August 28–31, 2018, Halifax, NS, Canada Gioele Barabucci

files. Instead, diffi reports if and how the abstraction levels of the

two documents differ from one another. For example, in the case of

two ODT files, diff will report differences:

• at the “sequence of paragraphs” level (which paragraphs are

different? how have they changed? which headings? Have

words been moved around?),

• at the XML level (which attributes have changed? which

elements? which subtrees has been moved?),

• at the Unicode level (what are the differences between the

way the XML files have been serialized? e.g. which code-

points have been decomposed?),

• at the UTF/UCS level,

• at the bitstream level.

The fact that diffi can provide an overview of what has changed

at multiple levels of abstraction addresses two issues: the practi-

cal problem of focusing on the right kind of differences, and the

philosophical question “are these two documents different?”.

The practical problem of showing to the user the right kind of

differences is a common, yet unsolved, problem in many fields that

make extensive use of diff tools [5, 8]. Take, for example, the case of

software engineering. Many practitioners lament the unsuitability

of the available tools: sometimes too many details are shown (e.g.

lines are shown as different because the amount of whitespace has

changed), other times too little information is shown (e.g., how did

the signature of this function change? how did the memory layout

of this structure change?). The root cause for this problem is the

fact that most source comparison tool rely on line-based diffs. Their

results are thus related to the textual representation of the source

code. In diffi, the textual representation of the code is just one

of the many abstraction levels that is compared; other levels are,

for example, the abstract source tree level, the class architecture

level and so on. While comparing source files diffi will find the

differences at all these abstraction levels and the developers will be

able to focus on the abstraction levels they care about.

The philosophical issue of understanding whether two docu-

ments are different [10] is addressed by making it explicit that it

is possible (and in fact quite common) that two documents are

different at a certain level of abstraction while being different at

others. For example the same XML tree can be serialized in com-

pletely different ways. These two copies of the document would be

identical at many levels (e.g. XML-tree level) but different at others

(e.g., Unicode level, bitstream level). In this case diffi would show

exactly that: no differences for the higher abstraction levels and a

detailed list of differences for the each lower level.

2.1 Comparison across formats
The fact that documents are seen as stacks of abstraction levels

allows diffi to compare content across documents that are saved

in different formats. Take for instance an HTML page and a flat ODT

file, whose stacks of abstraction levels are depicted in Figure 1. Most

of the levels at the bottom of these stacks are incomparable and

comparing the few that are comparable would lead to meaningless

results. At the top of the stacks, instead, there are levels that can be

meaningfully compared, for example the “sequence of paragraphs”

level. A comparison at that level will produce a list of differences

among entities such as “paragraphs”, “headings” and “figures”, all

concepts of that particular abstraction level.

Unicode

ODT

XML-DOM

XML serialization

Unicode

UTF-8

gzip

bitstream

Unicode

HTML tagset

HTML SGML-like

CP-1252 repertoire

CP-1252 encoding

bitstream

= comparable similar, but
not comparable

bitstream

HTMLODT
paragraphs paragraphs

Figure 1: CMV+P stacks for a compressed flat ODT file and
an HTML

2.2 Comparison procedure
The comparison workflow in diffi, schematically illustrated in

algorithm 1, consists of four steps:

(1) decoding the source and target files and understandingwhich

abstraction levels they are composed of,

(2) finding which abstraction levels can be compared,

(3) computing the deltas of each pair of comparable levels,

(4) serializing the deltas produced in the previous step into a

patch file.

Program diffi file
1
, file

2

stack1 = LevelsInFile(file
1
);

stack2 = LevelsInFile(file
2
);

cmp_levels = IndexesOfComparableLevels(stack1, stack2);
deltas = new Array();

forall (idx1, idx2) in cmp_levels do
L1 = stack1[idx1]; L2 = stack2[idx2];
// L1 and L2 have the same format

format = FormatOfLevel(L1);

algo = AlgoForFormat(format);
deltas « Differences(algo, L1, L2);

end
EmitPatch(deltas);

end
Algorithm 1: diffi’s comparison process

During the first step, the source and the target files are dese-

rialized and their respective stacks of abstraction levels are built.

diffi: diff improved; a preview DocEng ’18, August 28–31, 2018, Halifax, NS, Canada

The result of this step are two stacks, each containing a number

of abstraction levels, each of which has an associated model (e.g.

XML) and a set of typed content elements (e.g. nodes, processing

instructions). The concept of abstraction levels and the CMV+P

model behind them are described in more detail in Section 3.

In the second step, the levels in the two stacks are pairwise ana-

lyzed to find out which levels of the source stack can be compared

to which levels of the target stack. Two levels can be compared if

they share the same model (a more formal definition of comparabil-

ity is given in Section 3.1). The result of the second step is a list of

pairs of indices that indicate which pairs of levels of the source and

the target document can be compared. For the example in Figure 1

the list of comparable levels would be (0,0), (2,0), (9,6), (10,7).

The third step is the one in which the content of the comparable

levels is compared. The comparison is done using an algorithm that

is appropriate for the levels being compared, for example the Myers’

algorithm [9] for sequential content or Faxma [7] for XML trees.

The user can choose other algorithms, for example JNDiff [6] for

literary documents. This step does not produce a single delta like

other diff tools. Instead, multiple deltas are created: one for each

pair of comparable levels. The deltas are stored in data structures

inspired by the Universal Delta Model, briefly discussed in Section 4.

In the fourth and last step, the deltas are serialized into a sin-

gle patch file. This patch is encoded according to the Extended

Universal Patch format described in Section 4.

3 DOCUMENTS AS STACKS OF
ABSTRACTION LEVELS

Given how central the concept of abstraction levels is for diffi, it
is necessary to introduce this concept in more rigorous terms along

with the CMV+P document model [4] from which it originates.

In a nutshell, the CMV+P model formalizes the common practice

of describing how to serialize a file format in terms of other sim-

pler formats. For example, a flat ODT file is described as an XML

document that uses a particular vocabulary. An XML document

then is serialized as a series of Unicode codepoints, that, in turn

are serialized according to the rules of a UTF-8 and so on, eventu-

ally becoming a series of bits. These bits are finally embedded on

a physical carrier. Each of these steps is, in CMV+P parlance, an

abstraction level. Together they form a stack of abstraction levels.

What follows are more rigorous definitions of the CMV+P doc-

ument model in its linear version, i.e. a stripped-down version of

the full model. This linear version can model only non-aggregate

documents (i.e. non zipped files).

Definition 3.1. A document D is a potentially infinite stack of

abstraction levels Li :

D = (L0,L1,L2, . . .)

Definition 3.2. An abstraction level L is a tuple composed of

a set of addressable elements C , a reference modelM and a set of

variants V :

L = (C,M,V)

Definition 3.3. The content of an abstraction level is a set C
containing addressable elements and relations between them (e.g.

order relations). The kind of elements that can be present in C and

their structure are dictated by the modelM .

Definition 3.4. Themodel of an abstraction level is a referenceM
to a specification that describes what are the types of the elements

in C and what are the constraints of its structure (e.g. Unicode 7,

XML 1.0, HTML 5, CSV as defined by RFC 4180, etc.).

Definition 3.5. The set of variants of an abstraction level is a set
V containing records of the choices, among those made available

by the model M , made during the creation of C (e.g. the order of

the XML attributes, normalization forms in Unicode, etc.).

3.1 Comparability, equality, equivalence
Definition 3.6. Two abstraction levels La and Lb are comparable

if and only if they share the same model, i.e.Ma = Mb .

Definition 3.7. Two abstraction levels La and Lb are equal if and
only if they are comparable and their content sets are identical, i.e.

Ma = Mb and Ca = Cb .

Definition 3.8. Two abstraction levels La and Lb are equivalent
under the equivalence relation eqv if and only if they are compara-

ble and all the elements that are different inCa andCb have associ-

ated variants va , vb and these variants are equivalent under eqv ,
i.e. ∃ (ca , cb) ∈ δ (Ca ,Cb) ↔ ∃va ∈ Va ,∃vb ∈ Vb , eqv (va ,vb).

4 THE UNIVERSAL DELTA MODEL AND THE
EXTENDED UNIFIED PATCH FORMAT

The diffi comparison process produces many deltas, one for each

pair of comparable abstraction levels. Each delta describes the dif-

ferences between two comparable levels using a model-specific set
of operations. The kinds of elements on which these operations

work are also model-specific. For example, at the Unicode level the

sequences of codepoints are modified by adding, removing or mov-

ing codepoints, while at the XML level a tree is modified by adding

an attribute, wrapping a sequence of elements or deleting a subtree.

The Universal Delta Model (UniDM) [2, 3] describes in abstract

terms how to record all these model-specific operations, from the

most basic ones (addition and deletion) to the most complex ones

(moving, wrapping, splitting, etc.)

These deltas are, however, abstract entities. To be useful to users,

deltas must be materialized, for example as patch files. diffi pro-
duces patches in a novel format: the Extended Unified Patch (EUP)

format. This format is an extension of the classic unified patch

format that is currently the de facto standard for the exchange of

patch files.

EUP extends the traditional unified patch format in two ways:

first, it allows the description of differences at multiple levels of

abstractions, second, it defines how to serialize model-specific op-

erations. In comparison, the traditional unified patch format is

defined for only one precise level of abstraction (the idiosyncratic

“lines of ASCII letters” level of abstraction) and describes only two

operations: addition and removal (plus context information).

A EUP file, exemplified in figure 2, is structured as follows:

• an header with the names of the files being compared,

• a sequence of abstraction levels, each of which has:

– a header with the human-readable name of an abstraction

level followed by its numerical ID,

– a list of hunks, each of which has:

∗ position informations about the elements being changed,

DocEng ’18, August 28–31, 2018, Halifax, NS, Canada Gioele Barabucci

∗ a list of changes to be applied, surrounded by context

elements.

The first character of each line identifies the class of the change.

If there is only one kind of elements in that particular abstraction

level, then the following first-character codes are used:

• a space identifies context elements,

• a + identifies an addition,

• a - identifies a deletion,

• a * (followed by a space and a capitalized name) identifies a

model-specific operation,

• a # identifies human-readable explanations of the instruction

that follows it.

All these operations identifiers are followed by an ASCII represen-

tation of the element or of a pointer to that element.

If the model of the abstraction level being compared allows for

more than one kind of elements, then the encoding of the changes

is extended to include the type of the element in the following way:

<op> <tab> <elem type> <tab> <elem representation>

--- file.odt

+++ file.html

=== paragraphs / 4.21 ===

@@ -1,1 +1,4 @@@

In the middle of the summer ...

1

-Álvaro!, cried her...

-2

The sun was shining furiosly ...

3

Paragraph "Álvaro!, cried her ..." moved here; split

into "Álvaro !" and "Cried her"

*Split(Move (2,3) ,6)

Nobody replied ...

4

=== Unicode / 1.3 ===

[...]

@@ -130,2 @@@

(space)

0020

#-Á (decomposed as A + acute)

-0041

-0301

l

006C

v

0076

[...]

@@ +176,1 @@

(space)

0020

#+Á (precomposed)

+00C1

l

006C

v

0076

Figure 2: Example of an extended unified patch (excepts). A
paragraph has been moved and split. In addition, the source
ODT file uses decomposed Unicode accented letters while
the target HTML file uses precomposed codepoints

5 RELATEDWORKS
There is a plethora of specialized comparison tools for almost any

imaginable kind of document and file format: Microsoft Word doc-

uments, images, fonts, ontologies, VHDL code, etc. All these tools

are limited to the comparison of one particular format and at one

particular abstraction. Their internal models and their output for-

mats are almost always format-specific and proprietary, both in the

sense of non publicly documented and in the sense of not usable in

conjunction with other tools.

De facto, the most interoperable tool is GNU diff. Many of the

cited tools do, in fact, internally use GNU diff (or a compatible

variant) to produce a patch and then interpret the results of the

patch making use of their knowledge of the formats.

A notable example of such extended use of GNU diff is diffos-

cope [1], an in-depth comparison tool that is able to describe the

differences between two archives, for example two Debian packages

or two zip files, by comparing not only the archives themselves but

also the content of the archives, using format-specific deserializa-

tion tools and comparing their textual representations.

Some tools claim to be able to compare the content of the docu-

ments, going beyond, for example, small variations due to the ex-

port process. In practice, these tools have a pre-processing step that

normalizes the content of input files, getting rid of “unimportant”

variations. The resulting normalized documents are then compared

using a format-specific diff algorithm, but only at a specific level of

abstraction.

6 CONCLUSIONS
This brief overview of diffi showed the basic workflow, the inter-

nal mechanisms and the output format that diffi uses to compare

the content of documents, even those that are stored in different

formats.

While still a prototype, diffi has already provided insights in

the way the various abstraction levels of which documents are

composed can be compared and the kind of analysis that is made

possible by the CMV+P model.

REFERENCES
[1] diffoscope: in-depth comparison of files, archives, and directories.

https://diffoscope.org/.

[2] Barabucci, G. Introduction to the universal delta model. In Proceedings of the
2013 ACM Symposium on Document Engineering. Florence, Italy, September 10-13,
2013 (2013), S. Marinai and K. Marriott, Eds., ACM.

[3] Barabucci, G. A universal delta model. PhD thesis, Università di Bologna, 2013.

[4] Barabucci, G. The CMV+P document model, linear version. In Versioning
cultural objects. IDE, 2018. (in print).

[5] Barabucci, G., Ciancarini, P., Di Iorio, A., and Vitali, F. Measuring the quality

of diff algorithms: a formalization. Computer Standards & Interfaces 46 (2016).
[6] Di Iorio, A., Schirinzi, M., Vitali, F., and Marchetti, C. A natural and multi-

layered approach to detect changes in tree-based textual documents. In ICEIS
2009 (London, UK, 2009), vol. 24 of LNBIP, Springer-Verlag, pp. 90–101.

[7] Lindholm, T., Kangasharju, J., and Tarkoma, S. Fast and simple XML tree

differencing by sequence alignment. In Proceedings of the 2006 ACM Symposium
on Document Engineering, Amsterdam, The Netherlands, October 10-13, 2006 (2006),
D. C. A. Bulterman and D. F. Brailsford, Eds., ACM, pp. 75–84.

[8] Munson, E. V. Collaborative authoring requires advanced change management.

In Proceedings of the International workshop on Document Changes: Modeling,
Detection, Storage and Visualization, Florence, Italy, September 10, 2013 (2013),

G. Barabucci, U. M. Borghoff, A. D. Iorio, and S. Maier, Eds.

[9] Myers, E. W. An O(ND) difference algorithm and its variations. Algorithmica 1,
2 (1986), 251–266.

[10] Renear, A. H., and Wickett, K. M. Documents cannot be edited. In Proceedings
of Balisage: The Markup Conference 2009 (2009).

	Abstract
	1 Introduction
	2 Overview of diffi
	2.1 Comparison across formats
	2.2 Comparison procedure

	3 Documents as stacks of abstraction levels
	3.1 Comparability, equality, equivalence

	4 The universal delta model and the extended unified patch format
	5 Related works
	6 Conclusions
	References

