Small-step pipelines reduce the complexity of XSLT / XPath programs

https://gioele.io/p/doceng2021

Marcel Schaeben

m.schaeben@uni-koeln.de Cologne Center for eHumanities Köln, Germany

Gioele Barabucci

gioele.barabucci@ntnu.no Norwegian University of Science and Technology Trondheim, Norway Problem

Programs grow as data gets more complex (1)

Input data

Business logic

```
<expenses>
    <!-- all expenses in EUR -->
    <expense id="1" person="gb"
value="10 "/>
    <expense id="2" person="ms"
value="1000" />
    [...]
```

<xsl:value-of
 select="sum(//expense/@value)"
/>

Programs grow as data gets more complex (2)

Input data

Business logic

More imperfection handling than core logic

Harder to work with

- 1. Less readable
- 2. Harder to debug
- 3. Harder to maintain
- 4. Harder to extend with new functionalities

Solution? First fix, then compute

Results

Results (in a nutshell)

After rewriting a monolithic program as small-step pipeline...

- Core task up to 2.5x less complex than conventional program.
- Peak complexity of pipeline is always lower or equal than that of conventional program.

Small-step pipelines

Small-step pipelines

1. Curation before analysis

Data is curated (i.e., imperfections are smoothed out, edge-cases are handled) before it is analyzed.

2. Small steps

The data-curation phase is deconstructed into small steps.

3. One problem at a time

Each data-curation step fixes only one specific problem.

4. Either read or fix

A data-curation step can only use a piece of data or fix it, but not both.

Small-step pipelines: "Either use or fix"

Use and fix at the same time (WRONG)

total = (attr("previous") ? @previous : DEFAULT_PREVIOUS) + @current

First fix, then use (BETTER)

```
Step 1: if !attr("previous") {
    @previous = DEFAULT_PREVIOUS
}
```

Step 2: total = @previous + @value

Projects that have adopted small-step pipelines (selected)

- Cologne Sanskrit Lexikon / LAZARUS https://cceh.uni-koeln.de/portfolio/lazarus/ University of Cologne, CCeH, 2013
- HallerNet <u>https://hallernet.org/</u>

Albrecht-Haller-Stiftung, Universität Bern, CCeH, 2016

- The School of Salamanca Akademie der Wissenschaften und der Literatur Mainz, 2018
- Marco Polo ENGH University Ca' Foscari Venice, 2021

Prove better?

Methodology: comparing complexity

 \rightarrow which is better?

What do we mean by "better"?

Same outcome, but...

- more readable
- more understandable
- easier to maintain
- less prone to errors

What do we mean by "better"?

Same outcome, but...

- more readable
- more understandable
- easier to maintain
- less prone to errors

\rightarrow McCabe cyclomatic complexity

McCabe cyclomatic complexity (McCabe 1976)

What increases complexity?

Methodology: comparing complexity

 \rightarrow which is better?

Peak cyclomatic complexity

Calculating complexity

Calculating complexity

Reproducible methodology

Dataset

Original (XSTL/XPath) and transpiled (JS) programs

Validation scripts

Complexity analysis scripts

https://zenodo.org/record/5115788

Results

Result 1: big complexity reduction when data is complex

"Expenses" (record-oriented XML)

	Peak complexity		
Task	С	SSP	C/SSP
1-all-paid-in-eur	3	2	1.5x more complex
2-sum-of-eur-expenses	3	2	1.5x more complex
3-sum-of-all-expenses	3	2	1.5x more complex
4-big-expenses	4	2	2x more complex
5-big-spenders	5	2	2.5x more complex
Conventional	Simple-step pipeline		

Result 2: incremental complexity reduction \rightarrow lean core

"Paragraphs" (mixed-content XML)

	Core task complexity		
Task	С	SSP	C/SSP
1-count-long-words	2	2	same complexity
2-count-after-joining	5	2	2.5x more complex
3-lines-start-with-vowel	5	2	2.5x more complex
Conventional			Simple-step pipeline

Result 2: incremental complexity reduction \rightarrow lean core

"Paragraphs" (mixed-content XML)

	Core task complexity		
Task	С	SSP	C/SSP
1-count-long-words	2	2	same complexity
2-count-after-joining	5	2	2.5x more complex
3-lines-start-with-vowel	5	2	2.5x more complex
Conventional -			Simple-step pipeline

Conclusions + Future work

Conclusions

Refactoring a program as a small-step pipeline leads to a significant reduction in cyclomatic complexity (up to 2.5x).

(In XSLT/XPath programs.)

Reduction cyclomatic complexity \rightarrow More readable, simpler programs.

Duaa Alawad, Manisha Panta, Minhaz F. Zibran, and Md Rakibul Islam. 2019. An Empirical Study of the Relationships between Code Readability and Software Complexity. CoRR abs/1909.01760 (2019). arXiv:1909.01760

Future work

- More programming languages
- Bigger programs
- More complex XPath expressions (axes)
- Test with data "in the wild"

Small-step pipelines reduce the complexity of XSLT / XPath programs

https://gioele.io/p/doceng2021

Marcel Schaeben

m.schaeben@uni-koeln.de Cologne Center for eHumanities Köln, Germany

Gioele Barabucci

gioele.barabucci@ntnu.no Norwegian University of Science and Technology Trondheim, Norway