Dockng 2021 — Limerick, Ireland 2021-08-25

Small-step pipelines reduce

the complexity of
XSLT / XPath programs

https://gioele.io/p/doceng?2021

Marcel Schaeben Gioele Barabucci
m.schaeben@uni-koeln.de gioele.barabucci@ntnu.no
Cologne Center for eHumanities Norwegian University of Science

and Technology

Koln, German .
Y Trondheim, Norway

https://gioele.io/p/doceng2021

Problem

Programs grow as data gets more complex (1)

Input data Business logic
<expenses> ' <xsl:value-of
<!-- all expenses in EUR --> select="sum(//expense/@value)"
<expense 1id="1" person="gb" />

value="10 "/>

<expense 1id="2" person="ms"
value="1000" />

[...]

DocEng 2021: Small-step pipelines reduce the complexity of XSLT/XPath programs

Programs grow as data gets more complex (2)

Input data Business logic

<xsl:value-of
select="sum((
//expense[

<expenses>
<expense 1id="1" person="'gb"
value="10" />

<expense id="2" person="gb" upper-case(@currency) = 'EUR' or
value="1000" /> not(@currency)

<expense id="3" person="ms" //expiﬁS:?lue,

=n n =n n S
value="30" currency="usd" / Cppor—case(@currency) = 'USD'

<expense 1id="4" person="'gb"

value="350" currency="Eur"/>) 1/(@value x 0.9)
II/>

DocEng 2021: Small-step pipelines reduce the complexity of XSLT/XPath programs

More imperfection handling than core logic

Input data Business logic
imperfection

<xsl:value-of handling

< >
expenses select(@

< rAd=11n -n n
expense 1id="1" person="gb //expense

value="10" />
<expense 1id="2" person="gb" upper-case(@currency) = 'EUR'
or
=n no/s
value="1000" / not(@currency)

<expense 1id="3" person="ms"
value="30" currency="usd" /> 1/gvalue]
<expense 1id="4" person="'gb"
value="350" currency="Eur"/>]

))II

//expense|
pper-case(@currency) = 'USD'
value eurusd-exchange-ra

core logic

DocEng 2021: Small-step pipelines reduce the complexity of XSLT/XPath programs

Harder to work with

Business logic _ .
imperfection

<xsl:value-of handling
select(@
//expense|
upper-case(@currency) = 'EUR'
or
not(@currency)

core logic

DocEng 2021: Small-step pipelines reduce the complexity of XSLT/XPath programs

W

Less readable
Harder to debug
Harder to
maintain

Harder to extend
with new
functionalities

Solution? First fix, then compute

Conventional

<xsl:value-of
select(
//expense|
upper-case(@currency) = 'EUR'

//expense|
pper-case(@currency) = 'USD'
1(Evatue eurusd-exchange-raca)
))" >

core logic

DocEng 2021: Small-step pipelines reduce the complexity of XSLT/XPath programs

input data

Pipeline

I default currency I

or
not(@currency) ‘ Q imperfection

handling

%

I normalize case I

I convert to EUR I

I core logic I

Results

Results (in a nutshell)

After rewriting a monolithic
program as small-step
pipeline...

e Coretask upto
2.5x less complex
than conventional
program.

e Peak complexity of
pipeline is always lower
or equal than that of
conventional program.

DocEng 2021: Small-step pipelines reduce the complexity of XSLT/XPath programs

“Expenses”
record-oriented XML

“Paragraphs”
(mixed-content XML)

e

1-all-paid-in-eur

o N B~ OO

o N B~ O

1

=

2-sum-of-eur-expense 3-sum-of-all-expenses

| L

o N B~ O
N B~ O

|

4-big-expenses

5-big-spenders

6
4
2
0

count-long-words 2-count-after-joining

Ly

| 3lines-start-with-vowe

‘ [] conventional

i step-final ‘

Small-step pipelines

Small-step pipelines

1. Curation before analysis
Data is curated (i.e., imperfections are smoothed out, edge-cases are

handled) before it is analyzed.

2. Small steps
The data-curation phase is deconstructed into small steps.

3. Oneproblem at atime
Each data-curation step fixes only one specific problem.

4. Eitherread or fix
A data-curation step can only use a piece of data or fix it, but not both.

DocEng 2021: Small-step pipelines reduce the complexity of XSLT/XPath programs 11

Small-step pipelines: “Either use or fix”

Use and fix at the same time (WRONG)

total = (attr(“previous”) ? @previous : DEFAULT_PREVIOUS) + @current

First fix, then use (BETTER)

Step 1: if lattr(“previous”) {
@previous = DEFAULT_PREVIOUS
}

Step 2: total = @previous + @value

DocEng 2021: Small-step pipelines reduce the complexity of XSLT/XPath programs

12

Projects that have adopted small-step pipelines (selected)

e Cologne Sanskrit Lexikon /LAZARUS
https://cceh.uni-koeln.de/portfolio/lazarus/
University of Cologne, CCeH, 2013

e HallerNet https://hallernet.org/
Albrecht-Haller-Stiftung, Universitat Bern, CCeH, 2016

e The School of Salamanca
Akademie der Wissenschaften und der Literatur Mainz, 2018

e Marco Polo ENGH
University Ca’' Foscari Venice, 2021

DocEng 2021: Small-step pipelines reduce the complexity of XSLT/XPath programs

13

https://cceh.uni-koeln.de/portfolio/lazarus/
https://hallernet.org/

Prove better?

Methodology: comparing complexity

monolith version

task 1()

task 2()

task_3()

pipeline version

t1_step_1() t1_step 2() t1_step 3()
t2 step_1() t2 step 2()
t3_step_1() t3_step_2() t3_step_3() t3_step_4()

DocEng 2021: Small-step pipelines reduce the complexity of XSLT/XPath programs

— which is better?

15

What do we mean by “better”?

Same outcome, but...

more readable

more understandable
easier to maintain
less prone to errors

DocEng 2021: Small-step pipelines reduce the complexity of XSLT/XPath programs

16

What do we mean by “better”?

Same outcome, but...

more readable

more understandable
easier to maintain
less prone to errors

— McCabe cyclomatic complexity

DocEng 2021: Small-step pipelines reduce the complexity of XSLT/XPath programs

17

McCabe cyclomatic complexity (McCabe 1976)

Number of independent paths O
through the execution graph of a /
program \Q

decision points 4

O
\' Source:

https://en.wikipedia.org/wiki/
Cyclomatic_complexity

DocEng 2021: Small-step pipelines reduce the complexity of XSLT/XPath programs

18

What increases complexity?

e if conditions
e boolean expressions

e for/whileloops

e switch cases decision points 4

DocEng 2021: Small-step pipelines reduce the complexity of XSLT/XPath programs

pe
o

Source:
https://en.wikipedia.org/wiki/
Cyclomatic_complexity

19

Methodology: comparing complexity

monolith version

task 1()

task 2()

task_3()

pipeline version

t1_step_1() t1_step 2() t1_step 3()
t2 step_1() t2 step 2()
t3_step_1() t3_step_2() t3_step_3() t3_step_4()

DocEng 2021: Small-step pipelines reduce the complexity of XSLT/XPath programs

— which is better?

20

Peak cyclomatic complexity

monolith version

task()

complexity 6

w_/

peak complexity 6

pipeline version

step_1()

step_2()

step_3()

2

4

3

~

4 (better!)

DocEng 2021: Small-step pipelines reduce the complexity of XSLT/XPath programs

21

Calculating complexity

“opinionated”,
rule-based manual
For each task: transpilation
monolith XPath / XSLT \ | Javascript
version implementation }> implementation
validation and
complexity
: calculation
pipeline XPath / XSLT }> Javascript
version implementation implementation

DocEng 2021: Small-step pipelines reduce the complexity of XSLT/XPath programs

Calculating complexity

monolith
version

XPath / XSLT Javascript
implementation implementation

pipeline
version

XPath / XSLT }> Javascript
implementation implementation

]

validation
of functional }>
equivalence

peak complexity
calculation

DocEng 2021: Small-step pipelines reduce the complexity of XSLT/XPath programs

23

Reproducible methodology

Dataset
Original (XSTL/XPath) and transpiled (JS) programs
Validation scripts

Complexity analysis scripts

https://zenodo.org/record/5115788

DocEng 2021: Small-step pipelines reduce the complexity of XSLT/XPath programs

24

https://zenodo.org/record/5115788

Results

Result 1: big complexity reduction when data is complex

“Expenses”
(record-oriented XML)

6

4

Wt) 2l el 2 e

ldl-paidkin-eur 2-sum-of-eur-expense 3-sum-of-all-expenses

6
4
2
0

o N B~ O

Conventional

6 6
4 4 Pipeline
2 H H 2
0 0
4-big-expenses 5-big-spenders
‘ [] conventional step-inter i step-final

Task
1-all-paid-in-eur
2-sum-of-eur-expenses
3-sum-of-all-expenses
4-big-expenses

5-big-spenders

Peak
complexity
C sSSP C/SSP
3 2 1.5x more complex
3 2 1.5x more complex
3 2 1.5x more complex
4 2 2x more complex
5 2 2.5x more complex

Conventional —' L Simple-step pipeline

DocEng 2021: Small-step pipelines reduce the complexity of XSLT/XPath programs

Result 2: incremental complexity reduction — lean core

“Paragraphs”
(mixed-content XML)

Core task
6 6 complexity
4 4
5 H H 2 H Task c SSP C/SSP
0 0 .
1-count-long-words 2-count-after-joining 1-count-long-words 2 2 same complexity
6 2-count-after-joining 5 2 2.5x more complex
‘ H 3-lines-start-with-vowel 5 2 2.5x more complex
2
e] L
3lines-start-with-vowd
Conventional Simple-step pipeline
[] conventional step-inter _J step-final

DocEng 2021: Small-step pipelines reduce the complexity of XSLT/XPath programs

27

Result 2: incremental complexity reduction — lean core

«“«)
Paragraphs
(mixed-content XML)
Core task
6 6 complexity
4 4
, , Task C | ssP CISSP
0 1ol 0 ! 1 2 2 i
1-count-long-words 2-count-after-joining -count-long-words same complexity
6 2-count-after-joining 5 2 2.5x more complex
N / 3-lines-start-with-vowel | 5 2 2.5x more complex
2
— 1L
Fines startwitirvond Conventional Simple-step pipeline
[] conventional step-inter _J step-final

DocEng 2021: Small-step pipelines reduce the complexity of XSLT/XPath programs

28

Conclusions
+

Future work

Conclusions

Refactoring a program as a small-step pipeline leads to a significant reduction in
cyclomatic complexity (up to 2.5x).

(In XSLT/XPath programs.)

Reduction cyclomatic complexity — More readable, simpler programs.

Duaa Alawad, Manisha Panta, Minhaz F. Zibran, and Md Rakibul Islam. 2019. An Empirical Study of the Relationships between
Code Readability and Software Complexity. CoRR abs/1909.01760 (2019). arXiv:1909.01760

DocEng 2021: Small-step pipelines reduce the complexity of XSLT/XPath programs

30

Future work

e More programming languages
e Bigger programs
e More complex XPath expressions (axes)

e Testwithdata“inthe wild”

DocEng 2021: Small-step pipelines reduce the complexity of XSLT/XPath programs

31

Dockng 2021 — Limerick, Ireland 2021-08-25

Small-step pipelines reduce

the complexity of
XSLT / XPath programs

https://gioele.io/p/doceng?2021

Marcel Schaeben Gioele Barabucci
m.schaeben@uni-koeln.de gioele.barabucci@ntnu.no
Cologne Center for eHumanities Norwegian University of Science

and Technology

Koln, German .
Y Trondheim, Norway

32

https://gioele.io/p/doceng2021

